import sklearn.datasets
from sklearn.tree import DecisionTreeRegressor
from model_inspector import get_inspectorGet an Inspector
Get an appropriate inspector for your model
get_inspector
get_inspector (model:sklearn.base.BaseEstimator, X:pandas.core.frame.DataFrame, y:pandas.core.series.Series)
Get an appropriate inspector for your model and data.
Parameters:
model: Fitted sklearn modelX: Matrix with the same featuresmodelwas trained ony: Series with same length asXand same meaning as target valuesmodelwas trained on
Example:
X, y = sklearn.datasets.load_diabetes(return_X_y=True, as_frame=True)dtr = DecisionTreeRegressor().fit(X, y)inspector = get_inspector(dtr, X=X, y=y)
inspectormodel_inspector.inspect.tree._TreeRegInspector(model=DecisionTreeRegressor())
inspector.methods['permutation_importance',
'plot_feature_clusters',
'plot_partial_dependence',
'plot_permutation_importance',
'plot_pred_vs_act',
'plot_residuals',
'plot_tree',
'show_correlation']
ax = inspector.plot_tree(max_depth=2)